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ABSTRACT

We compare recent low gravity measurements of the shear viscosity in Xenon

near its critical point with theoretical results obtained within the field theoretic

renormalization group (RG) theory. Non asymptotic effects and gravity effects

are included in our theoretical description, which allows a comparison outside the

asymptotic region as well as with earth bound experiments affected by gravity.

We also compare with the theoretical result of mode coupling theory. In both

theories no agreement with the frequency dependence of the real part of the shear

viscosity within one loop theory can be reached. The experimental value of the

ratio of the imaginary part to the real part of the shear viscosity at Tc is found

to be in agreement with the value calculated within the decoupled mode theory

(using the two loop value for the critical exponent of the temperature dependence

of the shear viscosity) but not with the one loop value obtained in RG-theory.

Thus a complete two loop calculation of the vertex function for the shear viscosity

is demanded.

KEY WORDS: critical point; dynamic critical phenomena; Xenon; renormal-

ization group theory; shear viscosity; transport coefficients
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1. INTRODUCTION

Close to the critical point of a liquid-gas phase transition the shear viscosity

η̄ is expected to show some interesting behavior: Exactly at the critical point

(for T = Tc and ρ = ρc) the shear viscosity diverges and shows a characteristic

power-law behavior (e.g. η̄ ∝ |T − Tc|−νxη at ρ = ρc) in the asymptotic region.

Farther away we find a crossover from the asymptotic behavior to the analytic

background behavior in temperature as well as in density.

However the experiments show a finite shear viscosity even very near to the

critical point. The first reason for the observed finite value of η̄ at the critical

point is that the shear viscosity depends on the frequency in the critical region

and remains finite at non-zero frequency so that its asymptotic behavior can

only be seen for vanishing frequencies. The second reason for the invisibility of

a diverging shear viscosity in earthbound experiments is that gravity induces a

density gradient in the liquid which causes the average shear viscosity to approach

a finite value at the critical point.

In Ref. [1, 2] we have calculated a theoretical expression for the shear viscos-

ity which is able to describe the asymptotic behavior of η̄ as well as the crossover

to the background behavior paying regard to frequency and gravitational effects.

In Ref. [2, 3] we compared the theory to earthbound experiments as well as to

recent microgravity experiments onboard a space shuttle [4] which allowed for the

first time an experimental verification of the so far only theoretically predicted

frequency effects.
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2. THE DYNAMIC MODEL

As shown in Ref. [1] the shear viscosity is determined by the dynamic corre-

lation function of the transverse momentum density jt in the limit k → 0 and can

be described within the model H [5]. The model H contains dynamic equations

for the order parameter φ0 (the entropy density) and the transverse momentum

density,

∂φ0

∂t
=

o

Γ ∇2 δH

δφ0

−
o
g (∇φ0)

δH

δjl

+ Θφ , (1)

∂jt
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o

λt ∇2 δH

δjt

+
o
g T

{
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−
∑
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[
jk∇δH

δjk
−∇kj

δH

δjk

]}
+Θt , (2)

with fast fluctuating forces Θi and the projector T to the direction of the trans-

verse momentum density. The Hamiltonian appearing in the dynamic equations

is the normal Hamiltonian of a φ4-theory together with the conserved density jt

entering quadratically:

H =
∫
ddx


1

2

o
r φ2

0 +
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2
(∇φ0)

2 +

o
u

4!
φ4

0 +
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2
ajj

2
t


 . (3)

As described in Ref. [1] the dynamic equations may be transformed into a dynamic

functional leading to dynamic vertex functions which can then be calculated in

perturbation theory. The singularities in the vertex functions may be absorbed

into Z-factors using field theoretic renormalization group theory. From these Z-

factors one obtains the RG-functions determining the flow of the couplings and

finally the expressions for the critical exponents.

From the vertex functions one obtains, apart from the shear viscosity, also

other dynamical quantities, e.g. the characteristic frequency or the thermal dif-

fusivity reviewed in Ref. [6].
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3. THE SHEAR VISCOSITY

In Ref. [2] we have already discussed the frequency dependent shear viscosity

but as there were no experimental data available at the moment of publication

we had to constrain ourselves to a comparison of the frequency independent shear

viscosity with experiments in 3He, 4He, CO2 and C2H6. The situation has changed

since and the recent microgravity experiments of Berg et al. [4] allow a detailed

analysis of frequency effects.

In Ref. [2] we have discussed the theoretical expression for the frequency

dependent shear viscosity, which is given by

η̄(t,∆ρ, ω) =
kBT

4π

ξ0
�f 2

t (�)Γ(�)
[1 + Et(ft(�), v(�), w(�))] , (4)

with the one-loop perturbational contribution

Et
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)
= −f2

t
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− 4
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3
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.

The parameters introduced in Eq. (5) are defined as

v(�) =
ξ−2(t)
(ξ−1

0 �)2
, w(�, ω) =

ω

2Γ(�)(ξ−1
0 �)4

, v±(�, ω) =
v

2
±
√(v

2

)2

+ iw . (6)

The crossover from the asymptotic to the background behavior is governed by

the mode coupling ft(�) and the Onsager coefficient Γ(�) which are given by

ft(�) =
24

19

[
1 +

�

�0

(
24

19f 2
0

− 1

)]−1

, (7)

Γ(�) = Γ0

(
19f 2
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�0
�

[
1 +

�
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(
24

19f 2
0

− 1

)])1−xη

, (8)
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where Γ0, f0 and �0 are the initial values of the Onsager coefficient Γ, the mode

coupling ft and the flow parameter �, all determined at a fixed temperature t = t0

at the critical isochore.

In Eq. (8) we have inserted the critical exponent 1 − xη instead of its one-

loop value 18/19 as we shall treat the exponent xη as an additional free parameter

which will be fitted from the experimental data. The reason for using another

than the one-loop value xη = 0.054 is that it is far away from the guessed value

xη ≈ 0.065 from experimental analysis and therefore not suitable for a compar-

ison with experiments. Even the theoretical values for this exponent differn in

literature depending on the method of calculation used (see Ref. [2] for a listing).

The flow parameter � is responsible for the crossover from the asymptotics

(for � → 0) to the background (for � → ∞) and connected to the correlation

length ξ and the frequency ω via the matching condition (which appears naturally

within the calculation setting certain logarithmic terms in the vertex functions

to zero) (
ξ0
ξ

)8

+

(
2ω

Γ(�)

)2

= �8 , (9)

where ξ0 is the amplitude of the correlation length. The initial value �0 of the

flow parameter is found from Eq. (9) at zero frequency inserting the value ξ(t0)

of the correlation length evaluated at t0 and ρc.

The correlation length itself is a function of the temperature and the density

and may be found using the restricted cubic model [7] discussed in Ref. [2] where

the reduced temperature t and the reduced density ∆ρ are expressed in terms of
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new variables r and θ,

t =
T − Tc

Tc
= (1− b2θ2) r , ∆ρ =

ρ− ρc

ρc
= k (θ + c θ3) rβ . (10)

The correlation length ξ is given by the heuristic expression

ξ = ξ0 (1 + 0.16θ2) r−ν = ξ0 t
−ν (1 + 0.16θ2)(1− b2θ2)ν , (11)

so that Eq. (10) can be inverted numerically to get the correlation length as a

function of the reduced temperature and the reduced density. Inserting ξ(t,∆ρ)

into the matching condition (9) and the corresponding flow parameter �(t,∆ρ, ω)

into Eqs. (4)-(8) we get the shear viscosity as a function of temperature, density

and frequency. We also should note that Eq. (5) simplifies significantly at zero

frequency and are given in Ref. [2].

In Fig. 1 we show the shear viscosity along the critical isochore as a function

of the reduced temperature for various values of the frequency. We see that

in absence of gravitation the shear viscosity follows the asymptotic power-law

η̄ ∝ ξxη ∝ t−νxη at zero frequency for small values of the reduced temperature

whereas for non-zero frequencies it approaches a finite value at Tc. If gravitation is

included however the frequency effects are masked by gravitational effects (except

for very large frequencies) so that frequency effects are only visible in microgravity

experiments. As discussed in Ref. [2] the reason is that in nonzero gravity we

find a density gradient in the liquid leading to a dependence of the correlation

length and thus of the shear viscosity on the vertical position in the vessel. Now

the shear viscosity is usually measured in a vessel with two rotating discs at the

bottom and the top so that the gravity average of the shear viscosity η̄av simply
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consists of the contributions of the viscosity or more precisely the decrement

D ∝ √
ηρ at the bottom and the top,

η̄av(t) =
(
√
η̄bρb +

√
η̄tρt)

2

4 ρc
. (12)

The limiting value of the average shear viscosity depends basically on the initial

value of the mode coupling f0 and the critical exponent xη which might allow an

exact determination of xη.

3. COMPARISON WITH EXPERIMENTS

In this section we shall compare our theoretical expression for the frequency

dependent shear viscosity with the microgravity data of Berg et al. [4] for Xe.

They did not only measure the real part of the shear viscosity but determined

also the imaginary part from the phase shift so that we are able to compare

our theoretical results for Re(η̄) as well as for the ratio Im(η̄)/Re(η̄) with these

experiments in Fig. 2-3.

Berg et al. compared their experimental results with the mode coupling the-

ory of Bhattacharjee et al. [8] and found that they could only describe their data

correctly multiplying the frequency by a factor of 2 in the theoretical expressions.

They explained the introduction of this factor as a two-loop effect correcting the

errors of the one-loop expression used for the frequency dependent shear viscosity.

As discussed in Ref. [3] we reach practically the same quality of agreement for

Re(η̄) with our theory if we multiply the frequency by a factor of 5, which may

be justified for the same reason as the factor of 2 in the mode coupling theory.
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Of course the experimental data of the earthbound experiments in Xe are well

described without this factor since, from the discussion above, frequency effects

play no role [3].

In Fig. 2 we compare our renormalization group result for Re(η̄) as well as

the corresponding mode coupling expression [8] with the experimental data (all

parameters are indicated in the plot) and find good agreement for both theo-

ries. However both theories fail to describe the experimental data correctly if no

multiplicative factor for the frequency is used.

As already mentioned we have treated the critical exponent as an additional

fit parameter in our theory. Therefore we started with the shear viscosity data

and chose t0 in order to determine the initial value of the Onsager coefficient Γ0

as a function of the initial value of the mode coupling f0 from the value of η̄(t0).

Then we used the experimental data for the characteristic frequency in Xe (see

Ref. [6]) to fit f0 in the nonasymptotic region with xη kept at its one-loop value

1/19. With Γ0(f0) and the set of parameters t0 and f0 we returned to the data

for the shear viscosity and finally fitted the exponent xη in the asymptotic region

(see Ref. [2, 3] for details). This procedure yielded the value xη = 0.065 instead

of xη = 0.069 used by Berg et al. We should note here that we can also use the

exponent xη = 0.069 (with different initial values for f0 and Γ0) to get exactly

the same quality of agreement as shown in Ref. [9] but then we are not able to

describe the characteristic frequency data correctly with this choice of f0 and Γ0.

In the way described above the specific flow of the mode coupling ft for

Xenon is fixed. No further free parameter remains for the shear viscosity at finite
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frequencies or other dynamical quantities. The appropriate coupling as a function

of temperature t and frequency ω is shown in Fig. 4 together with the range of

the experiments in Xenon (dark area). The experimental data lie on the plateau

of the fixed point value as well as on the slope of the crossover to the background

value.

Applying the mode coupling theory (with an exponent xη = 0.069) Berg et

al. found also good agreement for the ratio Im(η̄)/Re(η̄). Comparing our results

with these experimental data we get less satisfactory results [9] because in our

theory the ratio Im(η̄)/Re(η̄) approaches the finite value

lim
T→Tc

Im(η̄)

Re(η̄)
=

1

76

π

2

[
1− 1

76
{3 ln(1/4)− 1/3}

]−1

≈ 0.0195 (13)

at Tc which is different from the value 0.0353 obtained from the mode coupling

theory with the exponent xη = 0.069 [4]. As the limit of the ratio Im(η̄)/Re(η̄)

does not contain any free parameter at Tc it cannot be improved other than by

going to higher loop orders. This is shown in Fig. 3 where we compare our theory

and the mode coupling theory with the experimental data. In this respect we

should also note that the mode coupling expression used by Berg et al. is not

purely of one-loop order since it makes use of the experimental value for the

exponent xη which differs significantly from its one-loop value. If we insert the

one-loop value xη = 1/19 into the mode coupling expressions we would get a limit

Im(η̄)/Re(η̄) ≈ 0.0271 at Tc which is also significantly lower than the measured

limiting ratio. So a major difference between the mode coupling theory and our

theory is, that it is not possible to introduce the true critical exponent xη in
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our expression for Im(η̄)/Re(η̄) and therefore deviations from the one-loop order

perturbation theory cannot be weakened by the use of the correct value for xη.

CONCLUSION

We have seen that we can describe the microgravity data for the real part

of the shear viscosity very well with our theory if we introduce a multiplicative

factor for the frequency which may be interpreted as a correction coming from

higher order perturbation contributions. Then we can also describe earthbound

shear viscosity experiments [3] as well as light scattering experiments [3, 6] in Xe

with the same set of parameters. However our one-loop theory fails to describe

the experimental data for the ratio Im(η̄)/Re(η̄) correctly and we may expect

improvements from a two-loop theory currently in progress.
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FIGURE CAPTIONS

Fig. 1. The frequency dependent shear viscosity (with xη = 1/19) with and

without gravitation for the frequencies ω = 0 Hz, ω = 103 Hz and ω = 105 Hz.

Fig. 2. Comparison of the real part of the frequency dependent shear viscosity

evaluated in renormalization group theory with xη = 0.065 (full curves) and mode

coupling theory with xη = 0.069 (dashed curves) with experiments in micrograv-

ity [4]. In renormalization group theory the frequency was multiplied by a factor

A = 5 and in mode coupling theory by A = 2 (see text for explanation).

Fig. 3. Comparison of the ratio Im(η̄)/Re(η̄) of the frequency dependent shear

viscosity evaluated in renormalization group theory with xη = 0.065 (full curves)

and mode coupling theory with xη = 0.069 (dashed curves) with experiments in

microgravity [4]. In renormalization group theory the frequency was multiplied by

a factor A = 5 and in mode coupling theory by A = 2 (see text for explanation).

Fig. 4. Mode coupling f 2
t (t, ω) (all nonuniversal parameters for Xenon) as a

function of the reduced temperature t and the dimensionless frequency ω/Γ0ξ
−4
0

along the critical isochore. For small values of the frequency and the reduced

temperature we reach the fixed point value f ∗2t = 24/19. The dark region marks

the range of experimental shear viscosity data for Xenon.
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